

Adding Forks to Your
Perly

Tableware

Handling fixed-width records in parallel
S Lteven embark

W Corkhorse omputing
lembark@wrkhors.com

You may hear things like:

Perl is too slow for processing fixed-width records so I
wrote the latest version in C++ since it can handle the
data in parallel.

There are a few misunderstandings here:

 That Perl is slow.

 That Perl does not handle parallel processing well.

 That Perl does not handle fixed-width records.

It isn't, does, and can.

Comparing C++ and Perl:

Perl's I/O is a fairly thin layer over unistd.h library calls.

Perl and C++ block at the same rate.

Forked processes can easily share data stream with
separate file handles by letting the O/S buffer data.

unpack is reasonably efficient and more dynamic than
using struct's in C++.

Most of us use variable-width, delimited records.

These are the usual newline-terminated data we all know
and [lh][oa][vt]e.

Perl handles these via $\, readline, and split or regexen.

Common examples: logs or FASTA and FASTQ.

Read using the buffered I/O with readline or read.

Used for large records, variable or self-described data.

Fixed-Width Records

Fixed number of bytes per record.

Small records with space- or zero-padding per field.

Common in financial data – derived from card images
used on mainframe systems.

Record sizes tend to be small.

Files with lots of rows leaving them “tall & narrow”.

Fixed-width reads

Perl can read them with readline, read, or sysread.

read() uses Perl's buffered I/O to read characters.

sysread() bypasses buffered I/O and reads bytes.

$/ does record-based character I/O with maximum
record size if the O/S supports it.

The thinnest layer over the O/S is sysread.

UTF8: When fixed-width isn't

Traditional fixed-width data has fixed bytes per record.

Records read into a fixed-width buffer N bytes at a time.

UTF8 has characters not bytes.

Result: Use read() with I/O disciplines to deal with data
that may contain UTF8-encoded strings.

Buffered I/O system deals with layered I/O and
disciplines.

Using sysread

Copy up to N bytes from file handle as-is into a buffer:
 sysread FILEHANDLE,SCALAR,LENGTH,OFFSET

Bypasses process buffers and file handles.

On *NIX, Perl's sysread is a thin layer over read(2).

Copies data from the kernel buffer to process space.

Sharing a buffer

Common view: threads & shared memory “right” way.

Threads share the filehandle and in-process buffer.

 Threads are a lot of work to program & test

 Locking overhead may kill any time advantage.

Small records can share a kernel buffer.

Reads from the data stream pull in record-size chunks.

Traditional view of file handles

Handles connect to hardware.

Buffer the data in their own
space for efficiency.

readline and read use their
own buffers for this reason.

Kernel buffers make a big difference

Modern O/S use memory-
mapped I/O to a kernel buffer.

Data transfer via memcpy to
userspace.

Data faulted into the buffer.

File handles read from the
kernel buffer, not the device.

Example: Stock Trading Data

From the NYX daily files documentation.

Kernel buffers hold ~42 Quotes in an 4KB page.

Reads from multiple file handles will hit the buffer more
often than the disk.

Data
Format

Most of the
fields are
single-char
tags.

Record has
small
memory
footprint.

Field Offset Size Format

time 0 9 hhmmssXXX msec
exchange 9 1 char dictionary
symbol 10 16 char 6+10
bid price 26 11 float %.04f
bid size 37 7 int %7d
ask price 44 11 float %.04f
ask size 55 11 int %7d
quote condition 62 1 char dictionary
filler 63 4 text four blanks
bid exchange 67 1 char dictionary
ask exchange 68 1 char dictionary
sequence no 69 16 int %d
national bbo 85 1 digit dictionary
nasdaq bbo 86 1 digit dictionary
cancel/correct 87 1 char dictionary
source 88 1 char dictionary
retal int flag 89 1 char dictionary
short sale flag 90 1 char dictionary
CQS 91 1 char dictionary
UTP 92 1 char dictionary
finra adf 93 1 char dictionary
line 94 2 text \cM\cJ

Handling records

Unpack is the fastest way to split this up.

“A” is a space-padded ascii character sequence.

“x” skips a number of bytes.

No math on the values: don't convert to C int or float.

DBI stringifies all values anyway.

Also need to discard fixed with header record.

Parallel processing

Forks are actually simpler than they sound.

CPAN makes them even simpler:

I'll use Parallel::Queue for the examples here.

This takes a list of closures (or a job-creator object).

It forks them N-way parallel, aborting the queue if any
jobs exit non-zero.

Deals with exit (vs. return) to avoid phorktosis.

Simplest approach: Manager + Worker

A manager process forks off workers to read the data and
then cleans up after them.

Workers are given a filehandle.

Each worker reads a single record with sysread.

The natural order of reads will have most of the proc's
doing buffer copies most of the time.

Describing record

Template uses space-
padded values.

“A” and a width for
data loaded with DBI.

“x” ignores filler.

Read size == sum of A
& x fields.

my @fieldz =
(

[qw(time A 9)],
[qw(exch A 1)],
...
[qw(fill x 4)],
...

);

my $template
= join '',
map
{
 join '', @{ $_ }[1, 2];
}
@fieldz;

my $size = sum map { $_->[2] } @fieldz;

#!/bin/env perl
use v5.22;
use autodie;
use Parallel::Queue;

my ($path, $jobs) = getopt ...;

my @fieldz = ... ;
my $template = ... ;
my $size = ... ;
my $buffer = '';

open my $fh, '<', $path;
sysread $fh, $buffer, 92 # fixed header
// die "Failed header: $!";

sub read_recs { ... }

my @queue = (sub { read_recs) x $jobs;

my @failed = runqueue $jobs, @queue
or die 'Failed:', \@unfinished;

Closures dispatch reads.

Pass the queue to P::Q.

Failed jobs are returned
as a list of closures.

Production code needs
check on $. for restarts!

Dispatching reads.

Reading buffers
sub read_recs
{
 my $dbh = DBI->connect(...);
 my $sth = $dbh->prepare(...);
 my $i = 0

 for(;;)
 {
 $i = sysread $fh, $buffer, $size
 // die;
 $i or last;
 $i == $size
 or die "Runt: $i at $.\n";

 $sth->execute
 (
 unpack $template => $buffer
);
 }
 return
}

Not much code.

sysread pulls whole
records.

Sync via blocking.

Each process gets its
own $dbh, $sth.

What if the data is zipped?

Same basic process: share a filehandle.

open my $fh, '-|', “gzip -dc $path”;

After that fork and share a file handle.

Named pipes or filesystem sockets also be useful.

Network sockets have packet issues with record
boundaries – server needs to pre-chunk the data.

Improving DBI performance

Calling $sth->execute(@_) is expensive.

The faster approach is calling bind and using lexical
variables for the output...

But that doesn't fit onto a single slide.

Quick fix: bind array elements with “\$row[$i]”

 Saves managing a dozen+ lexical variables.

Half-billion records makes this worth benchmarking.

Multiple blocks help reduce overhead

Read N records < system page size.

Kernel call overhead more than larger memcopy.

Multiple records avoid starving jobs.

Check read with ! ($i % $size).

Apply template with substr or multiply template and
chunk array.

Using a job-object with P::Q

Generate the jobs as needed.

Blessed queue entry that can('next_job').

This can be handy for processing multiple files:

The original “queue” has an object for each file.

N jobs generated for each file by handler object.

Simple benchmarkopen my $fh, '<', $path;
my $size = ... ;
my $buffer = ' ' $size;
my $i = 0;
my $j = 0;
my $wall = 0;
sysread $fh, $buffer, 92; # discard header

for(;;)
{
 $i = sysread $fh, $buffer, $size
 or last;

 $i == $size
 or die "Runt read: $i at $.";

 @row = unpack $template => $buffer;

 ++$j % 65_536
 and next;

 $wall = tv_interval $t0, [gettimeofday];

 say "$$ $j / $wall = " . int($j / $wall);
}
$i // die "Failed read: $!";

say "Final: $$ $j / $wall = " . int($j / $wall);

Read & split rows.

Ignore DBI overhead.

Vary buffer size to check
chunked read speed.

Loop with fork to check
number of jobs.

Running a million records through...

~ 4.4 sec wallclock
for 1Mrec.

About 3Ksec for the
daily file's full
550Mrec.

Un-zipping this
many records to
/dev/null takes about
1.6sec.

13455 4 65536 / 1.077347 = 60830
13452 1 65536 / 1.127445 = 58127
13453 2 65536 / 1.324299 = 49487
13454 3 65536 / 1.739874 = 37667
13455 4 131072 / 2.139257 = 61269
13452 1 131072 / 2.188887 = 59880
13453 2 131072 / 2.383899 = 54982
13454 3 131072 / 3.157574 = 41510
13455 4 196608 / 3.19973 = 61445
13452 1 196608 / 3.251169 = 60473
13453 2 196608 / 3.445435 = 57063
13454 3 196608 / 4.21482 = 46646
13455 4 262144 / 4.274705 = 61324
13452 1 262144 / 4.303842 = 60909

Final: 13455 4 268606 / 4.380693 = 61315
Final: 13454 3 207351 / 4.389554 = 47237
Final: 13452 1 267971 / 4.398593 = 60921
Final: 13453 2 256075 / 4.397525 = 58231

10Mrec looks about the same

Better per-process
balance with
longer running
tasks.

Still ~60KHz per
process.

13182 4 2424832 / 39.453094 = 61461
13181 3 2490368 / 39.666493 = 62782
13179 1 2490368 / 40.221195 = 61916
13180 2 2490368 / 40.26747 = 61845

Summary: it's easier than you think.

sysread makes reading fixed records easy.

Parallel::Queue makes it simple to fork.

Kernel buffering makes the streaming data efficient.

 No need for shared memory or locking.

Net result: parallel processing of fixed-width data in Perl
is actually pretty easy.

References

As always, perldoc is your friend:

 perlpacktut

 perlperf

 perlfork

Try “perldoc perl” just to see how much there is!

