

per l i s impor tant

● and interesting for who is busy
● and weired for who is clever
● and useful for laziness
● and slow for study
● and practical for learning
● and poor for eye
● and helpful for heart

we should be good at . . .

● Java, Oracle, SAP, XML, ASM ...
● being guru proved to be a dream
● know why we learn
● we are poor job seeker
● we have to learn life long
● we need to be healthy
● we are born to be coder

we are jargon hacker

● we are copy-paste worker
● change job just for favorite seat
● programming only in editor
● dream to be user
● hard to show talent at interview
● shame to tell baby my title
● prove ideas only in mind

Summary

● we should be good at everything
● but we are just a jargon hacker
● we need a change in learning
● but what to do?

my per l l earn ing

● picking up little camel book in 200[12]
● let it sleep for (months|years)
● get hired after seeking job for 4 months
● it's a half year out-sourcing project
● anyway work in unix environment
● but find a copy key in keyboard
● happily testing PBX without training

hel lo wor ld wi th per l

● counting sizeof memory struct
● recursive, union, 4Bytes padding
● half months learning
● almost finished
● but C has no standard on padding
● go to new job with perl
● build hexdump for sally

goto o ld pro ject wi th $_

● taxi ordering with SMS gateway
● building 2 way net proxy
● dig for perl module in cpan
● got solved in 120 lines perl
● parameter file is not an issue
● comments is self document
● leaving without bug phone call

per l fo r t ra in ing

● new job for a nerd
● just experience on perl meetup
● call each student to do self-introduce
● Oracle is an oracle in teaching
● can perl help in this task?
● uniread, script, unlock.pl, DBIPR
● writing document with POD

Summary

● perl for TCP programming
● perl for relationship
● perl for learning and hacking
● but how to learn $language?

Story o f programming

● should know maths to be developer
● need better editor to enforce nice style
● work OT until monitor smoke
● talk to little bear, and just my bear
● object oriented is everything
● always in beta version
● we need more than coder

L i fe o f admin is t rat ion

● seems laziness but actually busy
● reboot @machine will take an hour
● down time is less than run time
● always the last to get alert
● run to office in midnight to press enter
● we need more than operator

Poem of B lue Co l lar

● we the unwilling,
● led by the unknowing,
● are doing the impossible
● for the ungrateful.
● we have done so much for so long
● with so little
● we are now qualified to do anything
● with nothing

Python paradox

● perl is ugly & too clever?

Summary

● life is hard & full of error
● we need to be wise
● perl => wisdom in %love
● let's talk about hello world

speak s lower , l i s ten fas ter

● print “hello world\n”
● print qq(hello world \n)
● print 'hello world', “\n”
● print q(hello world), qq(\n)
● printf '%s %s %s', 'hello', 'world', "\n"

l i s t and ar ray

● @greets = qw(hello world)
● push @greets, qq(\n)
● print qq(@greets)
● print join ' ', @greets
● print qq($_) for @greets
● $,=qq(\n); print @greets
● use English; $OFS=qq(\n); print @greets

hash map or SQL

● select distinctive * from ...
● @score=((80..89), (85..88))
● %dov=map {$_, 1} @score
● print scalar keys %dov
● select key, count(*) from ... group by key
● $cov{$_}++ for @score
● @log=map {“$_ $cov{$_}\n”} keys %cov
● print qq(@log)

Summary

● syntax is flexible
● list is strong
● hash is amazing
● why not bigger cake?

Return sca lar or ar ray

● sub distinct {
● my (%seen, @row)=();
● @row = grep {++$seen{$_}==1} @_;
● return @row if wantarray;
● return $#row; #let in a bug
● }
● print distinct @score
● print scalar distinct @score

Want hash? return ar ray

● sub count {
● my %cov;
● $cov{$_}++ for @_;
● return %cov
● }
● %cnt = count @score
● print grep {$cnt{$_}>1} keys %cnt
● select ... group by ... having count(*)>1

Sor t ing hash on keys

● print for sort keys %cnt
● @sorted = map {qq($_ => $cnt{$_}) }
● sort keys %cnt;
● print qq(@sorted);
● @rsort = map {qq($_ => $cnt{$_}) }
● sort {$b <=> $a}
● keys %cnt;

Summary

● sort, grep, map works together
● limited loop usage
● a little like pipe
● just reverted, without |
● so what's more on real OS?

OS moni tor ing

● #/usr/bin/perl -w
● @ps=`ps -ef`;
● @ps_user = map {/(^\w+)/}
● @ps[1..$#ps];
● print count(@ps_user);
● sub count {...}

Running my too l

● % sudo mv psgusr /usr/bin
● % sudo chmod a+x /usr/bin/psgusr
● % file `which psgusr`
● /usr/bin/...: perl script text executable
● % psgusr
● joe8root58oracle12...
● % perl /usr/bin/psgusr

use module

● use Text::Table;
● $tb = Text::Table->new(
● { title => score},
● { title => '| ', is_sep=>1},
● { title => total}
●);
● print $tb->load([100, 3], [99, 4], [90, 8]);

ps group 2 .0

● %psg=count(@ps_user);
● @pst=map {[$_, $psg{$_}]} keys %psg;
● $tb = Text::Table->new(
● { title => 'user'},
● { title => 'processes'}
●);
● print $tb->load(@pst);

Summary

● user focus on data
● perl focus on practice
● module can be useful
● powerful thing need better interface
● so how be helpful?

package, where su i te hang

● psh% modules
● psh% symbols
● package is a name space
● package holds variable, code and handle
● main:: can be omitted
● module contains one or more packages

impor t package symbols

● module can influence main package
● use Data::Dumper
● print Data::Dumper::Dumper(@INC)
● use Data::Dumper qw/Dumper/
● print Dumper(\@INC)
● print qq(@Data::Dumper::EXPORT)
● psh% symbols

data::Dumper::Dumper(@INC
data::Dumper

PSQL.pm

● package PSQL;
● use Exporter 'import';
● our @EXPORT = qw(distinct count);
● sub distinct {...}
● sub count {...}
● 1;
● #put it inside current path
● % perl -MPSQL -MPOE -I. -le 'print for

distinct map {/(^\w+)/} keys %INC'

symbol tab le i sa hash

● psh% use PSQL
● psh% symbols
● psh% symbols PSQL
● psh% print *::count{CODE}
● psh% print *PSQL::count{CODE}
● psh% require PSQL
● psh% import PSQL qw/distinct/

Summary

● package is dynamic
● module is package in pm file
● use is compile time require+import
● import that package's @EXPORTed code
● @EXPORT_OK is gentle version @EXPORT
● then how to share it with $world?

Module : :Star ter

● % module-starter --module=PSQL \
● --author=”Joe Jiang” \
● --email=lamp.purl@gmail.com \
● --builder=Module::Build
● % cd PSQL; perl Build.PL; ./Build
● % rm t/boilerplate.t; ./Build test
● now copy code into lib/PSQL.pm
● % ./Build dist

mailto:--email%3Dlamp.purl@gmail.com

at the user s ide

● tar xvfz PSQL-0.0.1.tar.gz
● cd PSQL-0.0.1
● perl Build.PL
● ./Build
● ./Build test
● sudo ./Build install
● perldoc PSQL
● perl -MPSQL -le 'print for distinct (1,1,2)'

pause.cpan.org

● request an PAUSE account
● upload your tar.gz file
● wait for your favorite mirror get synced
● wait for more info from user
● or beg for a victim user
● make ppm for active-perl user
● or just mail randy, ask him do a favor

the c l i ck make you famous

● upload file to author/id/J/JO/JOEJIANG
● arrive your mirror in 2 days

beg for a ppm package

Summary

● we can influence the world
● the user will notice it before we dead
● so module quality do matter
● at least we can increase version number
● persuade people use it with better doc
● talk it in perl meetup as me
● even buy them dinner

pause

● next is regular expression

regex

● re => really
● g => grep
● ex => exist in each platform
● ps -ef | grep perl | wc -l

every th ing in un ix i s f i l e

● and most of them flat file
● even inside the binary => strings
● most of the time grep works for admin
● perl regex is only an advanced sed + awk
● it's a mini language inside perl
● but mixed with love to life

repor t per l re la ted deb

● strace command-not-found perl 2> errlog
● grep i386 errlog
● cd /usr/share/command-not-

found/programs.d
● cat *.db | strings | egrep '^\w+$' | grep

perl | sort | uniq
● egrep is grep -E
● sort | uniq makes uniq works here

dont forget to rm $er r log

● but we dont even need to generate $file
● 2>&1 will be even cool
● the two can be combined into one
● without cd here and there
● our module can be used to make distinct
● once it's too long shell, think perl
● but leave it as homework

Summary

● shall avoid grep -v as possible
● with better regex
● text file can pipe smoothly
● let's build the tool chain

bas ic notes

● ^ and $ means ^a & ^e in bash
● called anchor, slim point in string
● ^$ match blank lines without //sm
● \w means words [A-Z0-9a-z_]
● + means repeat more than *

catch in to sca lar

● catch matched with ()
● @ps_user = map {/(^\w+)/} @ps
● catch into array index by ('s order
● $ps[1]=~/^(\w+)\W+(\w+)\W+(\w+)/
● $1 => root #uid
● $2 => 1 #pid
● $3 => 0 #ppid

use ^p! in psh

● notation obey your needs
● let it clear by writing m{...}smx
● according to perl best practice
● print map {m{(^[a-z]+)},”\n”} @ps
● use [a-z] to match all lc pid
● use \W to mean [^\w]
● use these less cause we love lower case

Summary

● catch into ($1, $2, $3 ...) for array
● else return match count for scalar
● return true for match even with no ()
● false mean grep -v
● use special char carefully
● regex is case sensitive

match famous process

● print the ps count of root and www
● print count map {m{^(www|root)}sm}

@ps
● we are chief admin now
● but how to focus on $cmd?
● split it with spaces => \s+
● p! print map {@f=split /\s+/; "$f[7]\n"}

@ps

but i need the parameter

● print map {
● my $b=$_; #get local copy
● @f=split /\s+/; #split as far as possible
● $b=~s/.*$f[6] //;#set @f[1..6] with \0
● $b
● } @ps
● # quick and dirty
● # why so long?

per l one l iner

● ps -ef | perl -plane 's/.*$F[6] //'
● -e => code from parameter
● -n => next line till EOF
● -a => auto split
● -l => print ... “\n”
● -p => print $_ for each line

Summary

● perl can be used in air-line
● perl golfer is fun
● funny things is easy with practice
● perl is practical
● so perl is easy

